

Laser-Assisted Guidance Landing Technology for Drones

Yung –Ching Kuo, Wei-Teng Chu, Yu-Po Cho, Jang-Ping Sheu National Tsing Hua University IEEE Mobile Ad-Hoc and Smart Systems (MASS) 2024

Speaker: Wei-Teng Chu, Yu-Po Cho Date: 2024/09/25

B

In recent years, **drone** flight has been widely applied across various fields, and how to accurately **land autonomously** at **designated locations** has become a popular research topic.

In recent years, **drone** flight has been widely applied across various fields, and how to accurately **land autonomously** at **designated locations** has become a popular research topic.

Existing vision-based methods can achieve precise landings, but they rely on camera systems, which are high payload, high-power consumption.

In recent years, **drone** flight has been widely applied across various fields, and how to accurately **land autonomously** at **designated locations** has become a popular research topic.

Existing vision-based methods can achieve precise landings, but they rely on camera systems, which are high payload, high-power consumption.

- In recent years, drone flight has been widely applied across various fields, and how to accurately land autonomously at designated locations has become a popular research topic.
- Existing vision-based methods can achieve precise landings, but they rely on camera systems, which are high payload, high-power consumption.

- 1
- In recent years, **drone** flight has been widely applied across various fields, and how to accurately **land autonomously** at **designated locations** has become a popular research topic.

Existing vision-based methods can achieve precise landings, but they rely on camera systems, which are high payload, high-power consumption.

Introduction

Introduction

The purpose of this study is to create an algorithm that will enable drones to land with precision despite the inherent positioning errors that are customary in GPS technology.

Using laser guidance to improve the accuracy of UAVs during landing.

This technique can provide the most **cost-effective solution** for this problem due to its **low payload**, **low power consumption** and even **low costs**.

Introduction - Laser

- Our work make use of laser **coherence**, ensuring **accurate direction** and **sharpness** of the measurement.
- Drones will **no longer require bright environments** for landing.
- Operating costs for drones can be reduced.
- The **recognition distance** for drones to locate the landing point can be **extended**.

Specification	Details	
Output wavelength	650 ± 5 nm	
Laser shape	Dot (Oval)	
Spot size	<18mm at 10m	
Size	ϕ 3.6 × 9mm	

Methodology - Framework

Equipment	Function	
Pixhawk 4	Flight controller	
Raspberry Pi 4B	Onboard computer	
5V Laser Beam Receiver Module	Detect the laser beam	
GT-38 Wireless Serial Communication Module	Communicate	

Fig. 3. Pixhawk 4

Equipment	Function	
Pixhawk 4	Flight controller	
Raspberry Pi 4B	Onboard computer	
5V Laser Beam Receiver Module	Detect the laser beam	
GT-38 Wireless Serial Communication Module	Communicate	

Fig. 4. Raspberry Pi 4B

Equipment	Function	
Pixhawk 4	Flight controller	
Raspberry Pi 4B	Onboard computer	
5V Laser Beam Receiver Module	Detect the laser beam	
GT-38 Wireless Serial Communication Module	Communicate	

Fig.5. 5V Laser Beam Receiver Module Fig. 6. GT-38 Wireless Serial Communication Module

Fig. 1-1. Landing Base

Fig. 1-2. Landing Base

Fig. 7. Arduino NANO

Equipment	Function	
Arduino NANO	Base computer	
5V DC motor	Generate fan shaped laser	
5V Laser Beam Transmitter Module	Emit laser beams	
28BYJ-48-5V Stepper Motor	Rotate laser projecting module	
GT-38 Wireless Serial Communication Module	Communicate	
Laser-Projecting Module	Enable fan shaped laser beam scan 360°	

Equipment	Function	
Arduino NANO	Base computer	
5V DC motor	Generate fan shaped laser	
5V Laser Beam Transmitter Module	Emit laser beams	
28BYJ-48-5V Stepper Motor	Rotate laser projecting module	
GT-38 Wireless Serial Communication Module	Communicate	
Laser-Projecting Module	Enable fan shaped laser beam scan 360°	

Methodology - Triangulation method

$$x_{bias} = r \cos \theta_1 - \frac{l}{2}$$

$$= \left(\frac{l}{\sin \phi} \cdot \sin \theta_2\right) \cos \theta_1 - \frac{l}{2}$$

$$length l$$

$$= \left(\frac{l}{\sin \phi} \cdot \sin \theta_2\right) \cos \theta_1 - \frac{l}{2}$$

$$= \left(\frac{l}{\sin(\pi - \theta_1 - \theta_2)} \cdot \sin \theta_2\right) \cos \theta_1 - \frac{l}{2}$$

$$\theta_1 = 2\pi - \theta_a$$

$$\theta_2 = 2\pi - \theta_b$$

$$= l \cdot \left(\frac{\sin \theta_2 \cos \theta_1}{\sin(\theta_1 + \theta_2)} - \frac{1}{2}\right)$$

$$\phi = \pi - \theta_1 - \theta_2$$

$$y_{bias} = r \sin \theta_1 - \frac{l}{2}$$

$$r = \frac{l}{\sin \phi} \cdot \sin \theta_2$$

$$= \left(\frac{l}{\sin \phi} \cdot \sin \theta_2\right) \sin \theta_1 - \frac{l}{2}$$

$$= \left(\frac{l}{\sin(\pi - \theta_1 - \theta_2)} \cdot \sin \theta_2\right) \sin \theta_1 - \frac{l}{2}$$

$$= l \cdot \left(\frac{\sin \theta_2 \sin \theta_1}{\sin(\theta_1 + \theta_2)} - \frac{1}{2}\right)$$

Fig. The imagination of the landing situation.

3D Diagram

³D Diagram

3D Diagram

Results and Discussion

5

Results and Discussion - Experiment setup

Туре	Data	
x-axis distance	3 meters	
y-axis distance	3 meters	
z-axis distance	3 meters	
Wind speed	6.9m/s	
Wind direction(360°)	30°	
Number of executions	35	

Results and Discussion - Experiment

Results and Discussion - Experiment

Results and Discussion - Result

Fig. 8. Scatter plot of predicted locations of the drone

Fig. 9. Bar chart of error between the actual point and predicted locations

Results and Discussion - System comparison

Related work	System model	Weight	Power consumption
Ours	Laser receiver module + GT-38 Communication Module	15g+25g	0.1W
Ground-Based Near Infrared Camera Array System [1]	Point Grey + Near Infrared Laser Lamp Point Grey	90g+470g	4.5W+25W
Remote Marker-Based Tracking Using Visible-Light Camera Sensor [2]	Camera on DJI Phantom 4 quadcopter	120g	×
Lightdenseyolo: A Fast and Accurate Marker Tracker for Autonomous UAV Landing [3]	Camera on DJI Phantom 4 quadcopter	120g	×

[1] T. Yang, G. Li, J. Li, Y. Zhang, X. Zhang, Z. Zhang, and Z. Li, "A ground-based near infrared camera array system for uav auto-landing in gps-denied environment," Sensors, vol. 16, no. 9, 2016.

[2] P. H. Nguyen, K. W. Kim, Y. W. Lee, and K. R. Park, "Remote markerbased tracking for uav landing using visible-light camera sensor," Sensors, vol. 17, no. 9, 2017.

[3] P. H. Nguyen, M. Arsalan, J. H. Koo, R. A. Naqvi, N. Q. Truong, and K. R. Park, "Lightdenseyolo: A fast and accurate marker tracker for autonomous uav landing by visible light camera sensor on drone," Sensors, vol. 18, no. 6, 2018.

B

2 The experiment results illustrate that the methodology developed in this research could perform satisfactorily in the scenario shown before.

The drones could land at the designated point with an maximum error of about 30 - 40 centimeters using our system.

THANK YOU!

• The drone hover near the landing base before

landing.

- Stepper motor A (Laser-projecting module A) start rotate to locate the drone.
- Stepper motor B do exactly the same process but with the opposite direction.
- Stepper motors will rotate in the opposite direction and become slower once they receive the signal sent from the drone.
- Each stepper motor will do this process **three** times.

Appendix - Flow chart of drone

- The drone hover near the landing base before landing.
- The drone will send a signal once it receive the laser from the landing base
- The drone will fly toward the landing spot after receiving the flying instruction sent by the landing base.
- Before land, the altitude will be measured.
- The drone lands precisely.

