

DODGING DYNAMICAL
OBSTACLES USING

TURTLEBOT4 CAMERA FEED
Wei-Teng Chu

National Tsing Hua University, Taiwan

MURO Lab, UC San Diego
Advisor: Prof. Jorge Cortés

ACKNOWLEDGMENT
• Words cannot express my gratitude to Professor Jorge Cortés and Ph.D. students Neilabh

Banzal, Parth Paritosh, and Scott Addams in the MURO Lab at UC San Diego. They

provided me with some tips and guidance to help me complete the research. In addition,

thanks should also go to the J. Yang & Family Foundation for sponsoring the scholarship

and the University System of Taiwan for offering me the opportunity to conduct research at

UC San Diego.

RESEARCH AIM
• Drive the robot to the designated destination.

• Dodge moving obstacle which will go across its path to
the goal.

• The perception of the robot is based on CAMERA
instead of LiDAR  Cheaper

Powerful

Open-Source Framework

Flexible

Develop and control the robot
systems.
Communication, real-time control,
col laboration between robotics
systems.
Create, simulate, and deploy robotics
applications across a wide range of
platforms.

ROS2
ROBOT OPERATING

SYSTEM 2

Topics

Publisher

Subscriber

Node

Node

Topic

Topics

Publisher

Subscriber

Subscriber

Node

Node

Node

Topic

Raspberry Pi 4B

TURTLEBOT4

RPLIDAR
A1M8

OAK-D Pro
Camera

OAK-D Pro

• Using the pretrained deep
learning model provided by
Luxonis.

Transformation?

• Although the robot can see the
obstacles through the camera, it
actually doesn’t know where the
obstacles actually are.

• Transform the coordinates from
the camera frame to the odometry
frame.

Forward Kinematics

• There are already many frames set
inside the Turtlebot4.

• The relationship between them are
also recorded in the system 

Retrieve them from specific topic.
• Transform the coordinates step by

step from the beginning to the goal
frame.

base_link
shell_link

oakd_rgb_camera_optical_frame
oakd_rgb_camera_frame

oakd_link

Forward Kinematics

Rotational Matrix

Coordinates in Odom Frame

Forward Kinematics

• are Quaternions, which
describe orientation or rotations in 3D
space.

• It is recorded in the Turtlebot system.

𝑞1, 𝑞2, 𝑞3, 𝑞4

RRT*
Rapidly-exploring Random Trees

• RRT* algorithm is used for path
planning for the robot in the
research.

• Convenient to find collision-free
paths in complex environments.

• Build a tree structure by iteratively
extending towards randomly
selected points.

Bézier Curve

• After the path is planned by the
RRT* algorithm, the path is usually
not smooth enough for the robot to
follow properly.

• Create Bézier Curve between each
po in t o f the RRT* pa th by
interpolation.

• The pa th can there fo re be
smoothed out.

Controller
• The control can be analogous to that

of the unicycle.

• The Turtlebot will measure the
difference between the current state
and the desired state to calculate the
inputs to control the robot.

• when the
robot is not dodging.

• when the
robot is dodging.

𝑘1 = 1100 ⋅ (10−4), 𝑘2 = 5𝑘1

𝑘1 = 500 ⋅ (10−4), 𝑘2 = 20𝑘1

Controller
• The control can be analogous to that

of the unicycle.

• The Turtlebot will measure the
difference between the current state
and the desired state to calculate the
inputs to control the robot.

• when the
robot is not dodging.

• when the
robot is dodging.

𝑘1 = 1100 ⋅ (10−4), 𝑘2 = 5𝑘1

𝑘1 = 500 ⋅ (10−4), 𝑘2 = 20𝑘1

• All the nodes and topics used in this
research are shown in the figure on the
right.

• The system is mainly composed of three
parts  Sensing, Transformation,
Driving.

• “/cmd_vel” is the node that drive the
Turtlebot. Sensing

Transformation

Driving

Implementation

ImplementationRobot Driver

Simulation

• Obstacle starts from (0, 0) to (250, 250)

• Turtlebot starts from (250, 250) to (50, 50)

• Red dot  Start RRT* (blue line)

• Green dash line  Bézier Curve

• Yellow dot  Separate the curve

• Repeat the steps above until the robot reaches

the destination

Simulation

Result

• [1] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance for quadrotors with event cameras,” Science Robotics, vol. 5, no. 40, p. eaaz9712, 2020.
• [2] T.-T.-N. Nguyen, T.-D. Phan, M.-T. Duong, C.-T. Nguyen, H.-P. Ly, and M.-H. Le, “Sensor fusion of camera and 2d lidar for self-driving automobile in obstacle avoidance scenarios,”

in 2022 International Workshop on Intelligent Systems (IWIS), pp. 1–7, 2022.
• [3] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided humanoid footstep planning for dynamic environments,” in 5th IEEE-RAS International Conference on Humanoid

Robots, 2005., pp. 13–18, Dec 2005.
• [4] N. Ye, R. Wang, and N. Li, “A novel active object detection network based on historical scenes and movements,” International Journal of Computer Theory and Engineering, vol. 13,

pp. 79–83, 01 2021.
• [5] P. H. Kashika and R. B. Venkatapur, “Deep learning technique for object detection from panoramic video frames,” International Journal of Computer Theory and Engineering, vol. 14,

no. 1, pp. 20–26, 2022.
• [6] X. Xie, H. Li, and F. Hu, “The flocs target detection algorithm based on the three frame difference and enhanced method of the otsu,” International Journal of Computer Theory and

Engineering, vol. 7, no. 3, p. 197, 2015.
• [7] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Springer Publishing Company, Incorporated, 2nd ed., 2016.
• [8] D. DeVon and T. Bretl, “Kinematic and dynamic control of a wheeled mobile robot,” in 2007 IEEE/RSJ International Conference on Intel ligent Robots and Systems, pp. 4065–4070,

2007.
• https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
• https://turtlebot.github.io/turtlebot4-user-manual/
• https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9098pro/
• https://automaticaddison.com/coordinate-frames-and-transforms-for-ros-based-mobile-robots/
• http://motion.cs.illinois.edu/RoboticSystems/CoordinateTransformations.html
• https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/
• https://husarion.com/tutorials/ros2-tutorials/7-transformation/
• https://en.wikipedia.org/wiki/B%C3%A9zier_curve
• https://www.researchgate.net/figure/Bezier-curve-with-five-control-points-and-control-polygon_fig3_327704259
• http://what-when-how.com/advanced-methods-in-computer-graphics/curves-and-surfaces-advanced-methods-in-computer-graphics-part-5/

References

Thanks for Listening!

