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RESEARCH AIM
• Drive the robot to the designated destination.

• Dodge moving obstacle which will go across its path to 
the goal.

• The perception of the robot is based on CAMERA 
instead of LiDAR  Cheaper



Powerful

Open-Source Framework 

Flexible

Develop and control the robot 
systems.
Communication, real-time control,
col laboration between robotics 
systems.
Create, simulate, and deploy robotics 
applications across a wide range of 
platforms.

ROS2
ROBOT OPERATING 

SYSTEM 2
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Raspberry Pi 4B

TURTLEBOT4

RPLIDAR 
A1M8

OAK-D Pro 
Camera



OAK-D Pro

• Using the pretrained deep 
learning model provided by 
Luxonis. 



Transformation?

• Although the robot can see the 
obstacles through the camera, it 
actually doesn’t know where the 
obstacles actually are. 

• Transform the coordinates from 
the camera frame to the odometry 
frame. 



Forward Kinematics

• There are already many frames set 
inside the Turtlebot4.

• The relationship between them are 
also recorded in the system  

Retrieve them from specific topic. 
• Transform the coordinates step by 

step from the beginning to the goal 
frame.   



base_link
shell_link

oakd_rgb_camera_optical_frame
oakd_rgb_camera_frame

oakd_link

Forward Kinematics



Rotational Matrix

Coordinates in Odom Frame

Forward Kinematics

•  are Quaternions, which 
describe orientation or rotations in 3D 
space. 

• It is recorded in the Turtlebot system.   

𝑞1,  𝑞2,  𝑞3,  𝑞4



RRT*
Rapidly-exploring Random Trees

• RRT* algorithm is used for path 
planning for the robot in the 
research.

• Convenient to find collision-free 
paths in complex environments.

• Build a tree structure by iteratively 
extending towards randomly 
selected points.



Bézier Curve

• After the path is planned by the 
RRT* algorithm, the path is usually 
not smooth enough for the robot to 
follow properly. 

• Create Bézier Curve between each 
po in t o f the RRT* pa th by 
interpolation.

• The pa th can there fo re be 
smoothed out.  



Controller
• The control can be analogous to that 

of the unicycle. 

• The Turtlebot will measure the 
difference between the current state 
and the desired state to calculate the 
inputs to control the robot. 

•  when the 
robot is not dodging.

•  when the 
robot is dodging.

𝑘1 = 1100 ⋅ (10−4),  𝑘2 = 5𝑘1

𝑘1 = 500 ⋅ (10−4),  𝑘2 = 20𝑘1
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• All the nodes and topics used in this 
research are shown in the figure on the 
right. 

• The system is mainly composed of three 
parts  Sensing, Transformation, 
Driving.

• “/cmd_vel” is the node that drive the 
Turtlebot. Sensing

Transformation

Driving

Implementation



ImplementationRobot Driver



Simulation

• Obstacle starts from (0, 0) to (250, 250)

• Turtlebot starts from (250, 250) to (50, 50)

• Red dot  Start RRT* (blue line)

• Green dash line  Bézier Curve

• Yellow dot  Separate the curve

• Repeat the steps above until the robot reaches 

the destination



Simulation



Result
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