

The 10th International Conference on MECHANICAL, AUTOMOTIVE AND MATERIALS ENGINEERING

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Da Nang, Vietnam

December 20-22, 2023

The 10th International Conference on Mechanical, Automotive and Materials Engineering

The 5th International conference on Progress in Mechanical and Aerospace Engineering

DODGING DYNAMICAL OBSTACLES USING TURTLEBOT4 CAMERA FEED

Wei-Teng Chu National Tsing Hua University, Taiwan

> MURO Lab, UC San Diego Advisor: Prof. Jorge Cortés

The 5th International conference on Progress in Mechanical and Aerospace Engineering

ACKNOWLEDGMENT

PMAE

Words cannot express my gratitude to Professor Jorge Cortés and Ph.D. students Neilabh • Banzal, Parth Paritosh, and Scott Addams in the MURO Lab at UC San Diego. They provided me with some tips and guidance to help me complete the research. In addition, thanks should also go to the J. Yang & Family Foundation for sponsoring the scholarship and the University System of Taiwan for offering me the opportunity to conduct research at UC San Diego.

The 5th International conference on Progress in Mechanical and Aerospace Engineering

RESEARCH AIM

PMAE

- Drive the robot to the designated destination.
- Dodge moving obstacle which will go across its path to the goal.
- The perception of the robot is based on CAMERA instead of LiDAR → Cheaper

PMAE The 5th International conference on Progress in Mechanical and Aerospace Engineering

ROS2 **ROBOT OPERATING SYSTEM 2**

Open-Source Framework

Flexible

Powerful

systems.

Communication, real-time control, collaboration between robotics systems.

Create, simulate, and deploy robotics applications across a wide range of platforms.

Da Nang, Vietnam December 20-22, 2023

Develop and control the robot

The 10th International Conference on Mechanical, Automotive and Materials Engineering

The 5th International conference on Progress in Mechanical and Aerospace Engineering

December 20-22, 2023 Da Nang, Vietnam

Publisher

PMAE

Subscriber

PMAE

The 5th International conference on Progress in Mechanical and Aerospace Engineering

TURTLEBOT4

Raspberry Pi 4B

PMAE

The 5th International conference on Progress in Mechanical and Aerospace Engineering

OAK-D Pro

• Using the pretrained deep learning model provided by Luxonis.

Transformation?

- Although the robot can see the obstacles through the camera, it actually doesn't know where the obstacles actually are.
- Transform the coordinates from the camera frame to the odometry frame.

CMAME 2023

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Forward Kinematics $^{0}T_{6} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}{}^{3}T_{4}{}^{4}T_{5}{}^{5}T_{6}$

• There are already many frames set inside the Turtlebot4.

PMAE

- The relationship between them are also recorded in the system \rightarrow Retrieve them from specific topic.
- Transform the coordinates step by step from the beginning to the goal frame.

oakd_rgb_came	
oakd_rgb_c	
oako	
oakd_cam	

The 10th International Conference on Mechanical, Automotive and Materials Engineering

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Forward Kinematics

December 20-22, 2023 Da Nang, Vietnam

oakd_rgb_camera_optical_frame oakd_rgb_camera_frame oakd_link

shell_link base link

Forward Kinematics

$$R(Q) = \begin{bmatrix} 2(q_0^2 + q_1^2) - 1 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & 2(q_0^2 + q_2^2) - 1 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_1) & 2(q_0^2 + q_3^2) - 1 \end{bmatrix}$$

$${}^{0}T_{6} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}{}^{3}T_{4}{}^{4}T_{5}{}^{5}T_{6}$$

$${}^{a}T_{b} = \begin{bmatrix} R_{3\times3}(Q) & \begin{bmatrix} x_{t} \\ y_{t} \\ z_{t} \end{bmatrix}_{3\times1} \\ O_{1,3} & 1 \end{bmatrix}_{4\times4}$$

- space.

Da Nang, Vietnam December 20-22, 2023

• q_1, q_2, q_3, q_4 are Quaternions, which describe orientation or rotations in 3D

• It is recorded in the Turtlebot system.

CMAME 2023

PMAE The 5th International conference on Progress in Mechanical and Aerospace Engineering

RRT* **Rapidly-exploring Random Trees**

- RRT* algorithm is used for path planning for the robot in the research.
- Convenient to find collision-free paths in complex environments.
- Build a tree structure by iteratively extending towards randomly selected points.

Bézier Curve

- After the path is planned by the RRT* algorithm, the path is usually not smooth enough for the robot to follow properly.
- Create Bézier Curve between each point of the RRT* path by interpolation.
- The path can therefore be smoothed out.

Kinematic and Dynamic Control of a Wheeled Mobile Rol

Controller

- The control can be analogous to that • of the unicycle.
- The Turtlebot will measure the • difference between the current state and the desired state to calculate the inputs to control the robot.
- $k_1 = 1100 \cdot (10^{-4}), k_2 = 5k_1$ when the robot is not dodging.
- $k_1 = 500 \cdot (10^{-4}), k_2 = 20k_1$ when the robot is dodging.

$$x = x_{current} - x_{desti}$$

$$y = y_{current} - y_{destir}$$

$$\theta = \theta_{current} - \theta_{destin}$$

$$egin{aligned} z_1 &= heta \ z_2 &= x\cos heta + y\sin \ z_3 &= x\sin heta - y\cos \ \end{pmatrix}$$

Da Nang, Vietnam | December 20-22, 2023

CMAME 2023

	David DeVon and Timothy Bretl
bot	Department of Aerospace Engineering
	University of Illinois at Urbana-Champaign
	Urbana, Illinois 61801
	{devon,tbretl}@uiuc.edu

 $x_1 = z_1$ $x_2 = z_2$ ination $x_3 = -2z_3 + z_1z_2$ nation

nation

 $in \theta$ $\cos\theta$

$$u_{1} = -k_{1}x_{1} + \frac{k_{2}x_{3}}{x_{1}^{2} + x_{2}^{2}}x_{2}$$
$$u_{2} = -k_{1}x_{2} - \frac{k_{2}x_{3}}{x_{1}^{2} + x_{2}^{2}}x_{1}$$

$$\omega = u_1$$

 $v = u_2 + z_3 u_1$

Kinematic and Dynamic Control of a Wheeled Mobile Ro

Controller

- The control can be analogous to that • of the unicycle.
- The Turtlebot will measure the • difference between the current state and the desired state to calculate the inputs to control the robot.
- $k_1 = 1100 \cdot (10^{-4}), k_2 = 5k_1$ when the robot is not dodging.
- $k_1 = 500 \cdot (10^{-4}), k_2 = 20k_1$ when the robot is dodging.

 $x = x_{current} - x_{destination}$

$$y = y_{current} - y_{destir}$$

$$\theta = \theta_{current} - \theta_{destin}$$

$$egin{aligned} z_1 &= heta \ z_2 &= x\cos heta + y\sin \ z_3 &= x\sin heta - y\cos \ \end{pmatrix}$$

CMAME 2023

	David DeVon and Timothy Bretl
bot	Department of Aerospace Engineering
	University of Illinois at Urbana-Champaign
	Urbana, Illinois 61801
	{devon,tbretl}@uiuc.edu

 $x_1 = z_1$ $x_2 = z_2$ $x_3 = -2z_3 + z_1z_2$ nation

nation

 $in \theta$ $\cos\theta$

$$u_{1} = -k_{1}x_{1} + \frac{k_{2}x_{3}}{x_{1}^{2} + x_{2}^{2}}x_{2}$$
$$u_{2} = -k_{1}x_{2} - \frac{k_{2}x_{3}}{x_{1}^{2} + x_{2}^{2}}x_{1}$$

$$egin{aligned} &\omega &= u_1 \ &v &= u_2 + z_3 u_1 \end{aligned}$$

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Implementation

 All the nodes and topics used in this research are shown in the figure on the right.

PMAE

- The system is mainly composed of three parts → Sensing, Transformation, Driving.
- "/cmd_vel" is the node that drive the Turtlebot.

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Robot Driver

PMAE

Implementation

CMAME 2023

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Simulation

The 10th International Conference on Mechanical, Automotive and Materials Engineering

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Simulation

Dodging Simulation

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Result

- [1] D. Falanga, K. Kleber, and D. Scaramuzza, "Dynamic obstacle avoidance for quadrotors with event cameras," Science Robotics, vol. 5, no. 40, p. eaaz9712, 2020.
- [2] T.-T.-N. Nguyen, T.-D. Phan, M.-T. Duong, C.-T. Nguyen, H.-P. Ly, and M.-H. Le, "Sensor fusion of camera and 2d lidar for self-driving automobile in obstacle avoidance scenarios," in 2022 International Workshop on Intelligent Systems (IWIS), pp. 1–7, 2022.
- [3] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, "Vision-guided humanoid footstep planning for dynamic environments," in 5th IEEE-RAS International Conference on Humanoid *Robots, 2005.*, pp. 13–18, Dec 2005.
- [4] N. Ye, R. Wang, and N. Li, "A novel active object detection network based on historical scenes and movements," International Journal of Computer Theory and Engineering, vol. 13, pp. 79-83, 01 2021.
- [5] P. H. Kashika and R. B. Venkatapur, "Deep learning technique for object detection from panoramic video frames," International Journal of Computer Theory and Engineering, vol. 14, no. 1, pp. 20–26, 2022.
- [6] X. Xie, H. Li, and F. Hu, "The flocs target detection algorithm based on the three frame difference and enhanced method of the otsu," International Journal of Computer Theory and Engineering, vol. 7, no. 3, p. 197, 2015.
- [7] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Springer Publishing Company, Incorporated, 2nd ed., 2016.
- [8] D. DeVon and T. Bretl, "Kinematic and dynamic control of a wheeled mobile robot," in 2007 IEEE/RSJ International Conference on Intel ligent Robots and Systems, pp. 4065–4070, 2007.
- https://docs.ros.org/en/rolling/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
- https://turtlebot.github.io/turtlebot4-user-manual/

CMAME 2023

- https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9098pro/
- https://automaticaddison.com/coordinate-frames-and-transforms-for-ros-based-mobile-robots/
- http://motion.cs.illinois.edu/RoboticSystems/CoordinateTransformations.html
- https://automaticaddison.com/how-to-convert-a-quaternion-to-a-rotation-matrix/
- https://husarion.com/tutorials/ros2-tutorials/7-transformation/
- https://en.wikipedia.org/wiki/B%C3%A9zier curve
- https://www.researchgate.net/figure/Bezier-curve-with-five-control-points-and-control-polygon fig3 327704259
- http://what-when-how.com/advanced-methods-in-computer-graphics/curves-and-surfaces-advanced-methods-in-computer-graphics-part-5/

PMAE

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Thanks for Listening!

The 10th International Conference on MECHANICAL, AUTOMOTIVE AND MATERIALS ENGINEERING

The 5th International conference on Progress in Mechanical and Aerospace Engineering

Da Nang, Vietnam

December 20-22, 2023

